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Bisphosphonates are pharmacological compounds that have been used for the prevention and
treatment of several pathological conditions including osteoporosis, primary hyperparathyroidism,
osteogenesis imperfecta, and other conditions characterized by bone fragility. Many studies have
been performed to date to analyze their effects on inflammation and bone remodelling and related
pathologies. The aim of this review is, starting from a background on inflammatory processes and
bone remodelling, to give an update on the use of bisphosphonates, outlining the possible side effects
and proposing new trends for the future. Starting from a brief introduction on inflammation and
bone remodelling, we collect and analyze studies involving the use of bisphosphonates for treatment
of inflammatory conditions and pathologies characterized by bone loss. Selected articles, including
reviews, published between 1976 and 2011, were chosen from Pubmed/Medline on the basis of their
content. Bisphosphonates exert a selective activity on inflammation and bone remodelling and
related pathologies, which are characterized by an excess in bone resorption. They improve not only
skeletal defects, but also general symptoms. Bisphosphonates have found clinical application
preventing and treating osteoporosis, osteitis deformans (Paget’s disease of bone), bone metastasis
(with or without hypercalcaemia), multiple myeloma, primary hyperparathyroidism, osteogenesis
imperfecta, and other conditions that feature bone fragility. Further clinical studies involving larger
cohorts are needed to optimize the dosage and length of therapy for each of these agents in each
clinical field in order to be able to maximize their properties concerning modulation of inflammation
and bone remodelling. In the near future, although ‘‘old’’ bisphosphonates will reach the end of their
patent life, ‘‘new’’ bisphosphonates will be designed to specifically target a pathological condition.
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INTRODUCTION

The bone undergoes a continuous resorption and
formation, respectively carried out by osteoclasts (OCLs)
and osteoblasts (OBs). The balance between these 2
processes is responsible for the adult skeletal homeo-
stasis.1 A disruption to this balance has been linked to
rheumatic diseases affecting the joint, such as rheuma-
toid arthritis (RA) and spondyloarthropathies, leading
to bone loss or bone accumulation in a process that also
involves inflammatory mediators such as cytokines and
factors found within the local bone microenvironment of
the affected joint.2 Bisphosphonates (BPs) represent an
interesting class of pharmacological agents that have
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been studied not only for their effects on bone
remodelling, but also for their effects on inflammatory
conditions. These agents inhibit the formation, aggre-
gation, and dissolution of calcium phosphate crystals;
they display a high affinity for bone mineralized matrix
and are able to inhibit bone resorption processes,
which represent their most important biological effect.3

Furthermore, experimental studies have shown how
BP treatment increases callus volume, trabecular bone
volume and bone mineral content, although it delays
the callus maturation and remodelling.4–9 The ability of
BPs to attach to bone surfaces is due to the strong
negative charge in the BP nucleus that binds to the
positively charged surface of hydroxyapatite.10 BPs
are cleared from the circulation within hours after
intravenous administration, becoming incorporated into
the bone and remaining within it for years.11,12 BPs
are widely used in the clinic for treatment of osteopo-
rosis, malignant diseases affecting the skeleton, Paget’s
disease of bone, and other pathological conditions.13

They include alendronic acid, clodronic acid, etidronic
acid, ibandronic acid, neridronic acid, pamidronic acid,
risedronic acid, tiludronic acid, and zoledronic acid
(ZA). They are available in the European Union
as tablets and solutions for infusion under various
trade names and as generic medicines (see European
Medicines Agency, 2011. Questions and answers on
the review of BPs and atypical stress fractures
EMA/288359/2011).

REVIEW CRITERIA AND AIM

A PubMed search was performed by using the
following key words (separately or combined):
‘‘BPs’’ combined with ‘‘Inflammation’’, ‘‘Bone’’, and
‘‘Remodelling’’. Selected articles, including reviews,
were published between 1990 and 2011 and chosen
on the basis of their content. The focus was on
specific aspects concerning the effect of BPs on
inflammation and bone remodelling and related
pathologies.

Inflammation

Inflammation is a complex set of interactions among
soluble factors and cells that can arise in any tissue in
response to infection and traumatic, post-ischemic, toxic
or autoimmune injury. The reaction can be either local
or systemic, acute or chronic, and must be strictly
regulated because a deficiency or excess of the inflam-
matory response can cause morbidity and shorten
lifespan. Acute inflammation represents the initial
physiologic reaction to tissue injury. It is mediated by
the release of several mediators (Table 1) and it usually

precedes the immune response to foreign agents. In
contrast to acute inflammation, which is made manifest
in vascular changes, oedema, and largely by neutrophil
infiltration, the chronic phase is characterised by
infiltration of lymphocytes, mononuclear leukocytes,
tissue destruction, angiogenesis, fibrosis, and specific
mediators (Table 2). Inflammation can affect every
organ and tissue and many bone-related pathologies
are of inflammatory aetiology.14

Bone remodelling

Bone remodelling can be defined as a cycle necessary to
maintain the skeleton structure and is mediated by the
bone-forming OB, the bone-degrading OCL, the
osteocyte, and the bone-lining cell.15 Bone tissue con-
stitutes the skeleton and, when analyzed macroscop-
ically in a longitudinal section, it can be distinguished
in 2 types, that is, cortical or compact bone and
trabecular or cancellous bone. The first type is a rather
dense tissue, although it is penetrated by blood vessels
through a canalicular network. It is primarily found in
the shaft of long bones. The second type is porous
and primarily found near joint surfaces at the end
of long bones and within vertebrae. It has a complex
three-dimensional structure consisting of struts and
plates. The orientation of trabeculae coincides with the
direction of stress trajectories. The bone adapts its
structure according to the applied load.16 In fact, a gain
in bone mass is observed after excess bone loading
although immobility, space flight, and long-term bed
rest result in bone loss; a gain in bone mass also occurs
during growth, when the refined trabecular bone
observed during childhood changes into a coarser
trabecular morphology which is visible in maturity,
after fracture healing and in relation with implant
incorporation.16 In a state of homeostatic equilibrium,
continuous bone resorption and bone formation,
namely remodelling, accounts for the ability of the
bone to adapt to mechanical load allowing the old bone
to be continuously replaced by new tissue.16 This
balanced equilibrium is necessary to maintain the
mechanical integrity of the bone without causing
changes in its morphology and is defined as remod-
elling state.17,18 The skeleton undergoes renewal by
remodelling in approximately 10 years.19 The remod-
elling process can be divided in 6 cycling phases, that
is, quiescence, activation, resorption, inversion, forma-
tion, and mineralization.19 The remodelling process is
based on the separate actions of bone-resorbing cells
called OCLs, and bone-forming cells called OB.
However, during the modelling process, which takes
place principally in the child, formation and resorption
are not balanced, causing changes in the microarchitec-
ture because the new bone forms at a location different
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Table 1. Acute inflammation mediators.

Mediator Origin Effects

Protein Complement system Liver C5a: is chemotactic for neutrophils; increases
vascular permeability; releases histamine from
mast cells; C3a: has properties similar to the C5a
ones, but less active; C567: is chemotactic for
neutrophils; C56789: has cytolytic activity; C4b,
2a, 3b: opsonizes bacteria

Coagulation system Liver Induces hemostasis; thrombin: converts fibrinogen
to fibrin and fibrinopeptides; fibrinopeptides:
induces vascular permeability and it is chemo-
tactic for leukocytes

Fibrinolytic system Liver Induces hemolisys; plasmin: activates complement
components C3 and C5 and splits fibrin into fibrin
split products; fibrin split products: induces
vascular permeability

Kinin system Liver Induces smooth muscle contraction; stimulates
arteriolar dilatation; increases permeability of
venules (very potent); induces pain

Lipid Eicosanoid Ubiquitous PG: PGE2: vasodilates, intensifies bradykinin
induced pain, induces fever; PGD2: vasodilates;
PGI2: vasodilates and is a powerful inhibitor of
platelet aggregation; TXA2: vasoconstricts and
stimulates platelet aggregation; LT: LTB4: is
a potent neutrophil and macrophage chemotactic
agent, and causes aggregation and increased
adherence of polymorphonuclear neutrophils to
vascular endothelia; LTC4, LTD4, LTE4 (identified
as the SRS-A): constricts extravascular smooth
muscle, vasoconstricts, and increases vascular
permeability

Acetyl glycerol ether
Phosphocholine (PAF)

A variety of cell types
(such as neutrophils,
basophils, platelets,
and endothelial
cells)

Activates platelets; increases vascular permeability
directly and from the effect of histamine and
serotonin released from platelet activation;
induces chemotaxis; stimulates leukocyte aggre-
gation and adhesion; stimulates target cells to
synthesize eicosinoids and augments their effects

Other Histamine Mast cells, basophil
and eosinophil
leukocytes, and
platelets

Induces arteriolar dilatation and increases
permeability of venules in the immediate
transient phase; is chemotactic for eosinophils

Serotonine
(5-hydroxytryptamine,
5-HT)

Mast cells and
platelets

It is vasoactive (dilatation and constriction) and
increases permeability of venules; it regulates
hemostasis

NO Vascular Endothelia
(constitutive) and
macrophages
(inducible)

Induces vasodilation

Endotoxin Bacteria Triggers complement activation, which causes
vasodilation and increases vascular permeability;
activates coagulation and fibrinolytic; elicits
T-cell proliferation

LT, leukotrienes; NO, nitric oxide; PAF, platelet activating factor; PG, prostaglandin.
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from the destroyed one. The remodelling process
begins at a quiescent bone surface with the OCL
appearance. They are large multinucleated cells that
are formed by fusion of mononuclear precursors of
hematopoietic origin.20 They attach to the bone tissue
matrix and form a ruffled border at the bone/OCLs
interface that is completely surrounded by a ‘‘sealing’’
zone. Thus the OCLs create an isolated microenviron-
ment. Subsequently, the OCLs acidify the microenvi-
ronment and dissolve the organic and inorganic bone
matrices.21 As soon as this resorptive process stops,
OBs make their appearance at the same surface site.
The OBs derive from mesenchymal stem cells found in
the bone marrow, periosteum, and soft tissues. OBs
deposit osteoid, which becomes a mineralized form of
new bone. Some of the OBs are encapsulated in the

osteoid matrix and differentiate into osteocytes.
Remaining OBs continue to synthesize bone until they
eventually stop and transform into quiescent lining
cells that completely cover the newly formed bone
surface. These lining cells are highly interconnected
with the osteocytes in the bone matrix through
a canalicular network.22,23 It seems that OCLs and
OBs closely collaborate in the remodelling process in
what has been called a ‘‘Basic Multicellular Unit’’,
indicating that a coupling mechanism may exist
between formation and resorption.24 Many mediators
such as hormones, chemotactic agents, and cytokines
participate in remodelling. These mediators attract
OCLs and OBs in remodelling sites, they modify cell
proliferation and differentiation, and they induce bone
matrix deposition. Frequently, the pathophysiology of

Table 2. Chronic inflammation mediators.

Mediator Origin Effects

IL-1 Helper CD4+ T lymphocytes,
monocytes, macrophages, and
endothelial cells

Induces fever; induces sleepiness; decreases appetite; induces hemo
dynamic effects (hypotension, decreased vascular resistance,
increased heart rate); induces leukocytosis; induces hepatic synthesis
of acute phase proteins (fibrinogen, complement components, CRP);
increases synthesis of surface adhesion molecules; increases
adhesion of leukocytes to endothelium; increases elaboration of PGI2
and platelet activating factor; increases thrombogenicity of the
endothelial surface; increases proliferation and collagen
synthesis; increases collagenase and protease synthesis; increases
synthesis of PGE2

IL-6 — Induces fever, acute phase protein and PGE2
IL-8 — Is a chemotactic agent and an activator of neutrophils
IL-17 — Induces fever; induces sleepiness; decreases appetite; induces

hemodynamic effects (hypotension, decreased vascular resistance,
increased heart rate); induces leukocytosis; induces hepatic synthesis
of acute phase proteins (fibrinogen, complement components, CRP);
increases synthesis of surface adhesion molecules; increases
adhesion of leukocytes to endothelium; increases elaboration of PGI2
and platelet activating factor; increases thrombogenicity of the
endothelial surface; increases proliferation and collagen synthesis;
increases collagenase and protease synthesis; increases synthesis of
PGE2

TNF-a — Induces fever; induces sleepiness; decreases appetite; induces
hemodynamic effects (hypotension, decreased vascular resistance,
increased heart rate); induces leukocytosis; induces hepatic synthesis
of acute phase proteins (fibrinogen, complement components, CRP);
increases synthesis of surface adhesion molecules; increases
adhesion of leukocytes to endothelium; increases elaboration of PGI2
and platelet activating factor; increases thrombogenicity of the
endothelial surface; increases proliferation and collagen synthesis;
increases collagenase and protease synthesis; increases synthesis of
PGE2

GM-CSF — Induces macrophage and leucocyte activation
PDGF — Induces fibroblast proliferation and chemotaxis

GM-CSF, granulocyte and monocyte colony stimulating factor; PG, prostaglandin; PDGF, platelet-derived growth factor.
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bone disease is characterized by an alteration of the
activity of these mediators.25–31

Inflammation and Bone Loss

It is widely accepted that chronic inflammatory process
and associated immune system activation can induce
bone modifications,32 like in an excess of subchondral
bone resorption.14 Molecular bases of osteoclasto-
genesis and bone resorption depend on imbalances
of receptor activator of nuclear factor-kB ligand
(RANKL)-RANK—osteoprotegerin (OPG) system.
RANKL is produced by OBs and, together with
macrophage colony stimulating factor (M-CSF), in-
duces the differentiation of OC precursors and their
activation by binding to its surface-receptor, i.e. RANK.
When bone-resorption is not necessary, RANK is
inhibited by the binding with OPG.32 Many proin-
flammatory cytokines, such as M-CSF, interleukin (IL)-
6, IL-11 (stimulates Ig production, induces proliferation
of myeloid precursors and megakaryocytes), tumor
necrosis factor alpha (TNF-a), IL-1, hormones, such as
parathyroid hormone (PTH), eicosanoids, such as
PGE2, and other mediators, such as NO and reactive
oxygen species, enhance RANKL expression. Instead,
other molecules, such as OPG, IL-18, IL-12, IL-4,
interferon-g, act as bone resorption inhibitors.33 For
instance, an in vitro study has showed how IL-12
potentially inhibits OCL formation in M-CSF and
RANKL treated mouse bone marrow cells and IFN-g
may be involved in OCL formation inhibition.34 IL-18
inhibits osteoclastogenesis by stimulating T-cell pro-
duction in response to GM-CSF35 and it can also
increase OPG expression in OBs without altering
RANKL production.36 IL-4 inhibits OCL differentiation
through inhibition of the RANKL-induced activation of
NF-kB pathway.37–39 A mechanism for IL-4 inhibition
of bone resorption has been also reported. It occurs
through prevention of RANKL-induced nuclear trans-
location of p65 NF-kB subunit and intracellular
Ca2+changes.37 In this process, activation of STAT6,
which subsequently acts as a transcriptional repressor
of NF-kB–activated genes, plays a key role.38

Many pathologies are characterised by inflam-
mation and bone modifications. For instance, RA is
characterized by destruction of articular cartilage and
by excessive subchondral osteoclastic bone resorp-
tion.40 In the inflammatory state, macrophages (which
differentiate into OCLs) accumulate in the rheumatoid
synovial membrane.41 Many osteoclastogenic media-
tors, including IL-1,42 IL-6,43 IL-11,44 IL-13,45 IL-17,46

TNF-a,47 PGE2,48,49 and PTH,50 have an active role in
RA pathophysiology. Rheumatoid synovial fibroblasts
producing RANKL, and T-cell–producing RANKL,
have been shown to promote OCLs formation, without

the participation of other cells.51,52 OCLs release
enzymes, matrix metalloproteinases (MMPs) and che-
motactic factors to promote bone destruction,53 and
increase the risk of osteoporosis and bone fractures.54

For years, osteoarthritis (OA) was thought to be
characterized only by focal destruction of articular
cartilage, but nowadays, it is known to affect the joint
in all its major tissues, that is, cartilage, synovial mem-
brane, and subchondral bone.55 An abnormal expres-
sion of OPG and RANKL was observed in the
osteoarthritic subchondral bone OB subpopulations
in humans and their ratio was significantly reduced in
the subpopulation displaying resorptive properties.56

Joint inflammation may accelerate joint damage.
Cytokines, produced by the synovium and chondro-
cytes, especially interleukin IL-1 and TNF-a, play a
significant role in the degradation of cartilage and
subchondral bone,57 and prostaglandins and leuko-
trienes may also be involved as PGE2 increases in
human OA-affected tissue.58 C-reactive protein (CRP)
levels may be modestly elevated in OA patients’
serum.59 MMPs have been implicated in the excessive
matrix degradation that characterizes the cartilage and
subchondral bone degeneration of OA.60 The expres-
sion of several MMPs and members of the A
Disintegrin and Metalloprotease with Thrombospon-
din (ADAMTS) family of proteinases is high in OA
patients’ cartilage (eg, MMP-3, MMP-13, MMP-14,
ADAMTS-1, ADAMTS-4, and ADAMTS-5).61

Ankylosing spondylitis (AS) is a chronic inflamma-
tory arthritis and autoimmune disease. It mainly affects
the joints in the spine and sacroiliac joint in the pelvis
and can cause eventual spine fusion 8.62 TNF-a and
IL-6 are overexpressed in patients affected by AS.63

These proinflammatory cytokines have an important
role in the pathogenesis of the disease because the use
of TNF-a inhibitors reduces autoimmune response and
improves the symptoms of the pathology.64–66 Serum
RANKL/OPG ratio is higher in AS patients than in
healthy subjects, and this imbalance is probably
involved in the pathogenesis and clinical courses of
the frequently associated osteoporosis in AS.67

Periodontitis represents a specific inflammatory
response to microbial residents of the subgingival bio-
film. Emerging evidence strongly suggests that the
inflammatory response of the host induces tissue
destruction. Hence, although bacteria are necessary
for disease appearance, periodontitis does not develop
unless it is associated with inflammatory response
and host susceptibility.68 The inflammatory reaction
induced by the large bacterial bioburden brings to the
activation of the monocyte/macrophagic system and
T lymphocytes with release of MMP and RANKL,
whereas gingival fibroblasts release M-CSF69 and
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modulate negatively OPG synthesis and imbalance
RANKL/OPG axis toward the bone resorption.70–73

Periodontitis-associated osteoclastogenesis also de-
pends on upregulation of cyclooxygenase-2 (COX-2,
enzyme which synthesizes prostaglandin) expression
in periodontal fibroblast, cementoblast, and OB and the
consequent increased production of PGE2.74

The major inflammatory bowel diseases (IBD) are
Crohn disease and ulcerative colitis.75 Crohn disease
is a chronic, relapsing, transmural inflammatory
disease affecting the whole gastrointestinal tract.76,77

Ulcerative colitis is a chronic, relapsing, nontransmural
mucosal inflammatory disease, but it affects only the
colon.78,79 Celiac disease is a chronic intestinal disorder
due to an immune reaction to the fraction of gluten
called gliadin and therefore, when this protein is
ingested, it leads to villous atrophy and inflammatory
alterations of small bowel mucosa from the duodenum
to the distal ileum.80,81 These diseases are immune/
inflammatory based, and the abnormal production of
pro-inflammatory mediators is pathophysiological. In
particular, many studies report higher level of RANKL
in IBD and celiac disease.82,83 Furthermore, the
alteration of intestinal absorption that characterizes
these pathologies reduces calcium collection and
deposition.84

Periprosthetic osteolysis is one the major causes of
orthopedic implant failure.85 Wear particles, such as
titanium or polyethylene particles, derived from the
wear of orthopedic implant surfaces, could activate
macrophages able to secrete cytokines and stimulate
osteoclastic bone resorption, causing osteolysis around
orthopedic implants.86 Different pro-inflammatory
mediators, such as IL-1, TNF-a, inducible nitric oxide
synthase (iNOS), COX-2, TNF-like weak inducer of
apoptosis are increased and contribute to upregulate
and secrete RANKL.85,87,88

Primary biliary cirrhosis (PBC) is an autoimmune
disease of the liver, characterized by the slow pro-
gressive destruction of the small bile ducts within
the liver, cholestasis, and high risk of fibrosis and
cirrhosis.89 IL-1b, IL-6, TNF-a, and complement com-
ponents are overexpressed in PBC patients.90 Although
osteoporosis is common in PBC,91 high levels of OPG
and low levels of RANKL have been detected in
subjects affected by this pathology. Probably, it
represents a compensatory mechanism to the negative
balance of bone remodelling.

Complex regional pain syndrome (CRPS) is a chronic
progressive disease characterized by severe pain,
swelling, and changes in the skin. Based on the pres-
ence of nerve lesion after the injury, CRPS is divided as
follows: type 1 (reflex sympathetic dystrophy) without
demonstrable nerve lesions; and type 2 (causalgia) with

nerve damage.92 Proinflammatory cytokines (IL-1b,
IL-6, TNF-a)93 and neuropeptides94 are directly invol-
ved in CRPS pathophysiology. The main role of inflam-
mation on CRPS pathogenesis is supported by the
effectiveness of antibody anti–TNF-a in reduction of
CRPS symptoms.95

Bisphosphonates

BPs are a class of drugs that prevent the loss of bone
mass. They are called BPs because they have 2 phos-
phonate groups (Figure 1). BPs inhibit the digestion of
bone by encouraging OCLs to undergo apoptosis and
slowing bone loss96,97,98). BPs have an anabolic activity
on OBs inducing an increase in bone matrix.99

BPs are classified in nitrogenous BPs (NBPs) and
nonnitrogenous BPs. The nonnitrogenous BPs (etidro-
nate, clodronate and tiludronate) are metabolized in the
cell to compounds that replace the terminal pyrophos-
phate moiety of ATP, forming a nonfunctional molecule
that competes with ATP in the cellular energy metab-
olism. The OCLs initiate apoptosis and die, leading to an
overall decrease in the bone breakdown.100

NBPs (pamidronate, neridronate, olpadronate,
alendronate, ibandronate, risedronate, zoledronate)
act on bone metabolism by binding and blocking the
enzyme farnesyl diphosphate synthase in the meva-
lonic acid metabolic pathway.101 This pathway plays
a key role in lipid modification (prenylation) of small
guanosine-5’-triphosphate proteins, such as Ras, Rho,
Rac, involved in osteoclastogenesis, cell survival, and
cytoskeletal dynamics. In particular, the cytoskeleton is
vital to maintain the ‘‘ruffled border’’ that is required
between a resorbing OCLs and a bone surface102,103).
The uses of BPs include the prevention and treatment
of osteoporosis, osteitis deformans (Paget disease of
bone), bone metastasis (with or without hypercalcae-
mia), multiple myeloma, primary hyperparathyroid-
ism, osteogenesis imperfecta, and other conditions that

FIGURE 1. Molecular structure of bisphosphonates.
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feature bone fragility.104 Several clinical studies have
also investigated the effects of BP therapy on AS
reporting, sometimes, conflicting results. For instance,
a study assessed the therapeutic potential of intrave-
nous pamidronate (60 mg infusions/6 months) in 35
cases of nonsteroidal anti-inflammatory drug (NSAID)
refractory or intolerant cases of AS.105 This study
showed good efficacy with an early feel good response
observed in 62% patients within 48 hours of the first
infusion and fever, arthralgia and myalgia observed in
6 cases after the first infusion, and in a case after the
second infusion. Improvements in many functional
indexes and scores were observed after 6 months. A
reduction in the tender and swollen joint counts of 54%
patients with peripheral arthritis was observed.105

Another clinical study in 90 AS patients showed how
BMDs values of both L-spine and femur showed
tendencies to the most increase in the group treated
with concurrent BP and anti-TNF-a agent if compared
with conventional treatment and BP and anti–TNF-a
agent; in this study, the gain of bone mass was
associated with the reduction of inflammation.106

Maksymowych et al107 designed 2 studies to assess
the efficacy of pamidronate in AS patients. The first
open study assessed an intensive regime of Pamidro-
nate (60 mg pamidronate at 1, 2, 14, 28 and 56 days) in 9
AS patients showing significant improvements: the
mean Bath Ankylosing Spondylitis Disease Activity
Index (BASDAI) decreased by 44.2%, mean Bath
Ankylosing Spondylitis Functional Index (BASFI) by
47%, mean Bath Ankylosing Spondylitis Global Index
(BASGI) by 42%, mean erythrocyte sedimentation rate
(ESR) by 49.4%, and CRP by 66.9%; a decrease in mean
tender and swollen joint count by 98.2% and 93.8%,
respectively was also observed.107 A second random-
ized double blind trial compared 60 mg versus 10 mg
intravenous pamidronate adminsitered for 6 months in
84 NSAID refractory AS patients. Seventy-two patients
completed therapy showing a 34.5% decrease in the
mean BASDAI in the 60 mg group and a 15% decrease
in the 10 mg group at 6 months; significantly,
reductions were also observed in the 60 mg group
for the BASFI, BASGI, and Bath Ankylosing Spondy-
litis Metrology Index. Significantly, more patients
achieved a reduction of .25% in the BASDAI in the
60 mg group versus the 10 mg group (63.4% vs.
30.2%).108 Another open study tested the efficacy of
pamidronate (administered monthly for 6 months at
a 60 mg dosage and infused in 500 mL glucose over 2
hours) in 35 patients affected by AS or spondylarthro-
pathies. It showed a progressive decline in the BASDAI
from baseline reaching significance at 3 months. No
significant changes were observed in BASFI, CRP
levels, and ESR during the study, we did not find

significant changes between baseline and subsequent
visits. No clinical amelioration of peripheral arthritis
was observed. Pamidronate infusions were well
tolerated with side effects in only 10 cases.109 A further
study assessed the efficacy of monthly pamidronate
infusions (60 mg over 4 hours) for 6 months (1 infusion
per month) in 21 AS patients. In the fifteen patients,
who completed all 6 infusions, no improvement was
reported.110 An interesting study also evaluated bone
markers in 15 AS patients (mean disease duration of
14.8 years) who received 6 infusions of pamidrinate per
month (30 mg starting dose followed by 60 mg). The
study revealed a significant fall in degradation
products of type-1 collagen C-terminal telopeptides
(P = 0.001), serum bone GLA protein (P = 0.02), bone-
specific alkaline phosphatase (P = 0.02), and a signif-
icant improvement was seen in the BASDAI score; but
not in Bath Ankylosing Spondylitis Metrology Index,
CRP, or ESR.111 An interesting case report also showed
how pamidronate could bring benefit if started when
incomplete response is observed with anti–TNF-a
therapy in AS. In this report, the patient underwent
3 monthly infusions of pamidronate along with
continuing adalimumab displaying complete disap-
pearance of the back pain after the second pamidronate
infusion.112 BP therapy also found application for
treatment of psoriatic arthritis (PA). For instance, the
effect of ZA (3-monthly infusions for 1 year) on artic-
ular bone in patients with PA (n = 6) was investigated
using magnetic resonance imaging (MRI) and com-
pared with placebo (n = 16). ZA reduced the pro-
gression of MRI bone edema, indicating probable
suppression of osteitis concordant with reduction in
clinical measures of disease activity.113 A recent study
has also investigated by means of MRI scan the effect of
ZA (3-monthly infusions for 1 year) on articular bone
in patients with erosive PA compared with placebo and
to patients receiving no infusions. MRI scans from
6 patients who received ZA, 6 patients who underwent
placebo, and 10 who received no infusions showed
a decrease in bone edema score in the ZA group (15.5–
8.5) and an increase in the non-ZA group (indicator of
osteitis suppression), whereas no difference between
groups in change in MRI erosion score was ob-
served.113 Only a few nonrandomized and randomized
clinical studies are available on the link between BPs
and fracture risk in Cystic fibrosis, AN autosomal
recessive disease characterized by vertebral fractures
with an estimated prevalence of 14% among CF
patients.114,115 A Cochrane review analyzing data from
five randomized controlled trials of BP therapy in 145
adults with cystic fibrosis to assess the effect of oral
etidronate, oral alendronate, intravenous pamidronate
(30 mg IV every 3 months), and zoledronate (2 mg
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every 3 months) has also been performed. After 6
months, bone mineral density (BMD) values at the
lumbar spine and femur were increased, but the
fracture risk was not significantly decreased.116

In the past few years, BPs have demonstrated
a specific antiphlogistic effect.117 Apoptosis induction
in synovial macrophages has been suggested as one
of the most important mechanisms of antiarthritic/
anti-inflammatory effects of BPs.118 BPs, in particular
NBPs, induced a significant depletion of synovial
lining macrophages118–120 and, selectively, on macro-
phage-like type A synoviocytes, which are among the
most important sources of cytokines, resulting in a local
reduction of pro-inflammatory factors, such as IL-1, IL-6,
and TNF-a121–123; B lymphocytes, plasma cells, and
fibroblast-like type B synoviocytes are not affected. BPs
demonstrated to inhibit macrophage migration and
adhesion.3,124,125

BPs and Inflammation

Many clinical trials verify the antiphlogistic effects of
BPs in inflammatory disease.

Initially, BPs were used in RA to reduce the bone-
lytic effect of glucocorticoids. Lems et al126 observed
the progressive improvement of BMD, bone tough-
ness index, in lumbar spine, and of bone-turnover
markers in patients with RA, treated with low-dose
prednisone, if BPs were added to the therapy. The
inhibition of osteoclastogenesis by BP treatment, in
patients affected by RA, was verified by other specific
studies as follows: dual x-ray absorptiometry quan-
tified vertebral strength maintaining127; RANKL
decreased128; serum and urinary bone resorption
markers decreased.129 Interestingly, many proinflam-
matory parameters, such as ESR and concentrations of
serum CRP, IL-1, IL-6, and TNF-a, significantly
improved in RA patients, subject to BPs.43,121,130,131

This evidence suggests an additional and effective
anti-inflammatory effect of BPs in RA treatment.

Anti-OCLs activity of BPs was observed in OA
treatment. A significant decrease of tartrate-resistant
acid phosphatase 5b (TRACP 5b), a marker of OCLs
function, was observed in OA patients, treated with
BPs.132 In OA patients, BPs induced symptomatic
improvements, such as a decrease in pain and func-
tional improvements concerning limb extension and
joint mobility.133 BPs were able to preserve the struc-
tural integrity of subchondral bone in knee OA.134

Interestingly, a reduction in the urinary level of a
marker of cartilage degradation, C-terminal cross-
linking telopeptide of type II collagen, was also
observed.135,136 It suggests that inflammatory response,
concerning in particular MMP and other lytic enzymes,

which are terminal effectors of cartilage and bone
matrix degradation, is partially inhibited by BPs. BPs
effectively managed AS. BPs increased BMD and
reduced bone resorption.137 BPs improved the most
important activity and functional indices used to
evaluate the progression of AS.105 BPs may constitute
a reasonable alternative treatment in patients who
are refractory to NSAID108 or anti–TNF-a therapy.138

Unfortunately, no evidence of anti-inflammatory effect
of BPs in AS treatment was found. BPs have demon-
strated to be potent inhibitors of bone resorption and
inductors of new bone formation in periodontitis as
follows: treatment revealed a significant improvement
in the clinical parameters, such as gingival index,
probing pocket depth, and clinical attachment level.139

Also BMD140 and bleeding on probing141 also benefited
from BPs administration. BPs reduced gingival fibro-
blasts-induced RANKL secretion, the major stimulus of
OCLs proliferation in periodontitis.142 However, BPs
role on periodontitis inflammation is not clear. BPs
prevented PGE2 synthesis by inhibiting the expression
of COX-2,143 but also IL-6 increase was detected.142

Probably, IL-6 secretion depends on acute proinflam-
matory effect induced by BPs. BPs do not reduce
inflammation in IBD because it is principally sustained
neither by resident fibroblasts nor macrophages, but by
T lymphocytes. BPs induce apoptosis on resident mac-
rophages (partially committed to osteoclastic line-
age)118 and modify fibroblasts secretion-pattern,142

but they do not interact with pro-inflammatory lym-
phocytes. Although the pathophysiologic mechanism,
which leads to IBD, is not completely understood, an
important suppressor effect to IBD immune reaction is
induced by CD4+CD25+TR cells.144 Totsuka et al145

discovered that the suppression induced by
CD4+CD25+TR cells was abrogated if RANKL path-
way was blocked by antibodies anti-RANKL. So the
decrease of RANKL improves bone condition, but it
blocks lymphocyte suppression. Probably, it is another
cause which limits BPs effectiveness in IBD treatment
with antiosteoporotic effect146–150 but not to anti-
inflammatory effect. The same is true for periprosthetic
osteolysis. The proinflammatory cytokine profile, pro-
duced by macrophages and the nuclear factor kb

pathway expression in osteolysis, does not change in
subjects with arthroplasty-associated aseptic failure who
were treated with BPs.151 Probably, the huge amount of
wear debris particles, released by the prosthesis,
induced a massive inflammatory reaction,152 although
BPs acted downstream on OCLs differentiation and
function. BPs improved the BMD and the longevity
of different type of arthroplasties (eg, hip, knee,
femoral).153–156 Being an autoimmune disease, PBC
presents a relevant contribution to inflammation in its
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pathophysiology. At the present, no clinical trial on BPs
anti-inflammatory effect is ongoing, but the literature
contains many trials on the effective treatment of
PBC-dependent osteoporosis. Moreover, a recent study
of BPs treatment for osteoporosis showed a slight
gain in BMD in the unremodelled bone.157 NBPs,
better than nonnitrogenous ones, are safe and improve
significantly BMD, decreasing bone resorption in
PBC patients.158–160 Therefore, because one of the
severest symptoms of CRPS is osteoporosis, BPs have
been employed in CRPS therapy.161 Interestingly,
their therapeutic effect is not only the inhibition of
osteoclastogenesis, but also pain management.162,163

Although, many studies have showed that BPs reduce
pain and their effect probably depends on their
anti-inflammatory action,164,165 no molecular evidence
has been reported (Figure 2).

Adverse effects

The administration of BPs is associated with the risk
of manifestation of several side effects166 (Figure 3). BPs

have been associated with adverse events in the upper

gastrointestinal tract, acute phase response, hypocal-

caemia, and secondary hyperparathyroidism, muscu-

loskeletal pain, osteonecrosis of the jaw (ONJ), ocular

events, renal toxicity, atrial fibrillation, atypical frac-

tures of the femoral diaphysis, hepatitis, and esopha-

geal cancer.167,168 However, there is lack of agreement

on the relation between oral BPs and the risk of esoph-

ageal cancer. For instance, Cardwell et al169 performed

a cohort study showing that oral intake of BPs are not

significantly associated with incident esophageal or

gastric cancer if compared with nonuser controls as
assessed at 4.5 year follow-up. On the other hand,
another research group170 designed a case–control
sudy showing that the risk of esophageal cancer
increased with 10 or more prescriptions for oral BPs
and with prescriptions over about a 5-year period as
assessed at 7.6 year follow-up. Comparing the time-
dependent results, these 2 studies signal no increased
risk of cancer detectable within the first 3 years of
exposure to oral BPs.

It has been pointed out that there is no awareness of
possible risks associated to BPs therapy for longer
than 5 years; and however, in the case of osteoporosis,
it has been reported that oral BPs reduce the incidence
of devastating osteoporotic fractures in patients with
osteoporosis, but after 5 years, the overall fracture risk
is the same in patients who keep taking BPs as in
patients who discontinue them and therefore it
suggests that these drugs are no longer necessary after
5 years.171

Generally, intravenous BPs (pamidronate, ibandro-
nate, and ZA) are more potent than oral BPs (alendro-
nate, risedronate, and ibandronate), and the frequency
and severity of some of the BPs-associated adverse
events are dose and potency dependent.

NBPs can cause nausea, vomiting, epigastric pain and
dyspepsia, oesophagitis, oesophageal erosions, and
ulcerations in the upper gastrointestinal tract.172 To
avoid gastrointestinal symptoms, the patients are
advised to take NBPs orally, with at least 1 glass of
water, not to chew or allow the pill to dissolve in their
mouth, and to stay in the upright position for 30 minutes

FIGURE 2. Therapeutical effectiveness of bisphosphonates.
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after the drug intake, without eating or drinking.173

Intravenous NBPs can give fever and flu-like symptoms
after the first infusion, which is thought to occur because
of their potential to activate human gd T cells.174,175

Barrett’s esophagus should be a contraindication for BPs
because it increases the risk of oesophageal cancer.176

Many cases of renal toxicity have been reported with
BP treatment, in particular, intravenous BPs.177,178

Patterns of nephrotoxicity with these drugs include
toxic acute tubular necrosis and collapsing focal
segmental glomerulosclerosis.179 High affinity of BPs
for metal ions, including calcium and their tendency to
form soluble or insoluble complexes and aggregates
with metal ions, especially when drugs were infused
rapidly in high quantity, was considered to be a possible
cause of renal toxicity.166 The so formed complexes
could also be retained within the kidney leading to renal
injury.166 The risk of BP-associated renal toxicity
depends on the malignant disease, which affected the
patient. Many pathologies, for example, pre-existing
chronic kidney disease, multiple myeloma, hypercal-
caemia, hypertension, diabetes mellitus, advanced age,
have an intrinsic risk of nephrotoxicity.180,181

The most common ocular adverse reaction of
therapy with BPs is nonspecific conjunctivitis, which
usually is self-limited.182 A few cases of other ocular
side effects, such as eyelid edema, optic or retrobulbar
neuritis, periorbital edema, cranial nerve palsy, and
ptosis, have been reported. Uveitis and scleritis are the
most serious ocular side effects of BP therapy and
require the discontinuation of BP treatment.183,184

Many diseases (e.g., AS, Behcet syndrome, psoriasis,
Reiter syndrome, IBD, polychondritis, Wegener gran-
ulomatosis, RA, systemic lupus erythematosus, sar-
coidosis, and syphilis) and drugs (e.g., rifabutin,
trimethoprim-sulfamethoxazole, diethylcarbamazine,
metipranolol and cidovir) are associated with scleritis
and uveitis, so the appearance of ocular adverse effects
could be marginally attributed to BPs.184 In this
situation BPs may play the role of precipitating factor
for other substances.184

Intravenous BPs are known to cause a dose-dependent
Acute Phase Response (APR).185 Clinically, this systemic
reaction is characterized by fever, sometimes with
rigours, and influenza-like symptoms such as fatigue,
malaise, myalgia, arthralgia and bone pain.185,186 The
APR is maximally expressed 28–36 hours from the fourth
BP induced administration and subsides 2–3 days later,
despite continuous treatment.185 The BP-induced APR is
mediated by interleukin 6,187 TNF-a, and other proin-
flammatory cytokines released by receptor-activated gd

T cells and macrophages.186,188 The BP-induced APR is
usually benign and self-limiting and can be treated with
antipyretics.

BP-dependent inhibitors of bone resorption induces,
6 weeks after the administration, serum calcium and
phosphorus decrease; and PTH significantly increases
in a dose-dependent fashion. Calciuria and phospha-
turia also decrease.189 The increased PTH acts antag-
onizing the effect of BPs within the bone and conserves
calcium by increasing tubular reabsorption of calcium
in the kidneys and stimulating the production of 1,25-
dihydroxyvitamin D by the kidneys. Therefore, under
normal conditions, hypocalcemia induced by BPs
often resolves although the BP therapy is continued;
evidence suggests that symptomatic hypocalcaemia is
common after intravenous BP therapy.190 Many risk
factors for severe BP-induced hypocalcaemia have
been identified as follows: (1) pre-existing hypopara-
thyroidism; (2) parathyroid dysfunction during thy-
roidectomy in a patient receiving chronic BP therapy;
(3) vitamin D deficiency; (4) renal failure.190 Treatment
with adequate vitamin D and calcium about 2 weeks
before BP therapy may help avoiding or attenuating
the BP-induced hypocalcaemia and secondary
hyperparathyroidism.166

Severe and sometimes incapacitating bone, joint,
and/or muscle (musculoskeletal) pain can affect patients
who are taking BPs. The severe musculoskeletal pain
may occur within days, months, or years after the
beginning of BP therapy. Some patients have reported
a complete relief of symptoms after discontinuing BPs,
whereas others have reported slow or incomplete
resolution.191,192 A mechanism BP-related bone pain
has been hypothesized. In cases of BP-induced secondary

FIGURE 3. Common adverse effects associated with
bisphosphonate therapy.
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hyperparathyroidism, BPs cause a relatively smaller
reduction in bone turnover due to the antagonistic effect
of the high PTH. In these cases, the bone turnover that is
higher than we had expected after treatment with BP
therapy, may result in a relatively higher bone uptake of
BPs and higher than the mean concentration of the drug
in the bone microenvironment. This fact may result in an
inflammatory response within the bones which is
mediated by a localized relatively increased release of
proinflammatory cytokines including IL-6 which are
induced by BPs. On the other hand, increased levels of
IL-6 and consequent higher BP concentration in bone are
caused by high PTH in secondary hyperparathyroidism,
and high PTH may exert a synergistic effect in increased
release of IL-6.193,194

BPs have been associated with ONJ.195,196 Many
cases of BP-associated ONJ occurred after high-dose
intravenous administration used for treatment of many
types of cancer. ONJ is a severe bone disease that affects
the jaws, including the maxilla and the mandible.
Damage and death to areas of jawbone occur as a result
of multifactorial pathological events197 that are not
completely clarified yet. Many cases are preceded by
a dental surgical procedure that involves the bone, so it
has been suggested that intravenous BP treatment
should be postponed to any dental procedure.198

Controversial results on BP use and increased risk
of atrial fibrillation in women were reported.13,199–201 It
has been hypothesized that the inflammatory response
to BPs or fluctuations in calcium blood levels may be
responsible for atrial fibrillation.202 The current opinion
is that BPs do not induce atrial fibrillation but may
aggravate atrial fibrillation in patients predisposed to it
from other causes (such as patients with heart failure,
coronary artery disease, or diabetes).202

Previous studies in women affected by osteoporosis
have shown that BP intake was related to unusual
fractures in the femur (thigh bone) and in the shaft
(diaphysis or subtrochanteric region) of the bone,
rather than at the head of the bone, which represents
the most common site of fracture. However, the results
showed that these unusual fractures are extremely rare
if compared with the common hip fractures and the
overall reduction in hip fractures caused by BPs, by far
outweighed the unusual shaft fractures.203 Probably,
unusual fractures resulted in oversuppression of bone
turnover by BPs. It is hypothesized that microcracks in
the bone are unable to heal and eventually unite and
propagate, resulting in atypical fractures. Rarely, such
fractures tend to heal poorly and often require some
form of bone stimulation, for example, bone grafting as
a secondary procedure.203,204

A few cases of hepatitis, developing several
months205,206 or years207 after starting BP therapy and

resolving several months after discontinuing BPs, have
been reported. Liver biopsy revealed lesions suggestive
of a drug effect,208 even if some doubts remain due to
a rapid clearance of BPs from the circulation and soft
tissues and to the lack of metabolic degradation.

CONCLUSIONS

BPs are universally recognized as effective antiosteo-
porotic drugs. Their selective activity on bone has made
BPs an important instrument for primary and second-
ary osteogenesis impairment. Evaluating inflamma-
tion-based or inflammation-associated pathologies with
excess of bone resorption, it seems that BPs improve not
only skeletal defects but also general symptoms.
However, a careful analysis reveals that only the patho-
logies with skeletal localization demonstrate molecular
and macroscopic anti-inflammatory effects.

Indeed, RA, OA, and periosthetic osteolysis reveal
both inhibition of bone resorption and reduction of
inflammation when treated with BPs. We think that
BPs are able to modify the release of proinflammatory
cytokines in these pathologies because they act on local
effector cells, such as resident macrophages, OCLs,
progenitors, and fibroblasts.116–121 In these patholo-
gies, the contribution of lymphocytes, generally
untargeted by BPs, is minor with respect to systemic
inflammatory or autoimmune disease, such as IBD
and PBC.

IBD and PBC are lymphocyte T helper–mediated
disease, therefore, the inflammation component of
these pathologies is not susceptible to BPs. IBD and
PBC patients benefited from BP therapy only in sec-
ondary osteoporosis treatment.

Periodontitis, AS and CRPS have particular behav-
iors when are treated with BPs. In periodontitis, the
infection-derived inflammation leads to bone resorp-
tion. The bone damage is responsive to BP treatment,
whereas the acute inflammation is not. Probably it is due
to lymphocyte T immune response. In in vivo models of
periodontitis and in bone implants, BPs have also shown
interesting activities leading us to believe that these
applications will be a fixed point in BP development
in the next future.209,210 In a model of induced peri-
odontitis in monkeys, alendronate, at low concentration,
was able to inhibit the bone loss and improve the
probing pocket depth measurement. The same product
was able to prevent alveolar bone loss following muco-
periosteal flap surgery in rat mandible.211

AS is an autoimmune disease lymphocyte T depen-
dent with bone effects. Although BPs are not able to
switch off the activity of lymphocytes T, their specific
bone activity allows to manage AS and the frequently
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associated bone loss. Clinical studies, in patients
affected by AS,212 have shown that intravenous neri-
dronate treatment has induced a relevant improvement
on pain (measured using visual analog scale), some
clinical parameters and an increase in bone density.

In CRPS patients, BP treatment improves osteopo-
rosis but also inflammatory symptoms, such as pain
and swelling. Even if the real mechanism of action is
not known, the analgesic activity and the inhibition of
the phlogistic phenomenons, induced by these com-
pounds, and the inhibition of the local synthesis of
some mediators (IL-6,TNF-a,PGE2), may have a role.
Moreover, the effects on the microcirculation and the
inhibition of the lactic acid production lead to an
inhibition of the nociceptors and mechanoreceptors
with a consequent analgesic effect. It has been
postulated that BPs can bind to a bone surface
inhibiting the growth of adjacent nonbone cells
widening the range of potential target cells for these
drug reducing rates of cancer recurrence and the
pathogenesis of ONJ.208 A recent study has reported
on the use of BPs in many types of cancer. Initially,
BPs were used in cancer associated with bone
metastasis.213 However, researchers found that BPs
were able to inhibit tumoural cell proliferation.214,215

It is hypothesized that the blockage of the cycle of
mevalonate induces an increase in isopentenyl
diphosphate (IPP). IPP could behave as a phosphor-
antigen and trigger the release of cytokines and
interferon by gd T-lymphocytes. In particular, the
interferons are powerful antitumoral, antinfective and
anti-inflammatory agents. The interests in BPs has
increased thanks to the unexpected therapeutic effects
that have been discovered during their traditional
application.

It is clear that BP action is not only directed at the
bone cells, but also at several inflammatory cyto-
kines.216 Even if the mechanism, by which BPs control
the immune-inflammatory responses, are not com-
pletely216 elucidated, preliminary clinical data show
some encouraging results on the inhibition of the
phlogosis and the bone and articular damage, making
possible a more extended use of the BPs in other clinical
fields. In conclusion, nowadays many BPs exist and
they are all characterized by peculiar binding proper-
ties and exert their functions at the cellular level. It is
important to optimize the dosage and length of therapy
for each of these agents in each clinical field in order to
be able to maximize their properties concerning
modulation of inflammation and bone remodelling.
Further clinical studies involving larger cohorts need to
be designed in order to further determine their efficacy
analyzing side effects that may also occur in the long
term and making sure that they do not outweigh the

benefits. We should not exclude the possibility that in
the near future, while ‘‘old’’ BPs will reach the end of
their patent life, ‘‘new’’ BPs will be designed to
specifically target a pathological condition.
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